Utilizing the vegetation health index to assess agricultural drought in the Constantine Region of Algeria
DOI:
https://doi.org/10.47818/DRArch.2024.v5i2132Keywords:
remote sensing, drought, VHI, Google Earth Engine, ConstantineAbstract
This research employs remote sensing techniques to map agricultural drought in the Constantine region of Algeria during the years 2021 to 2023. Using Landsat images processed through the Google Earth Engine platform, three indices (NDVI, VHI, and SPI) were calculated. The findings indicate deterioration in both climatic conditions and vegetation health. Specifically, NDVI and SPI exhibit decreases, while VHI shows an increase, signaling heightened water stress. The inverse relationship between NDVI and VHI underscores the connection between water availability and vegetation health. Additionally, a detailed analysis reveals severe drought conditions in the Southwestern part of the region. This study showcases the value of utilizing remote sensing technology on the Google Earth Engine platform for monitoring climate and vegetation patterns over space and time. These insights can help in forecasting the effects of climate change on agriculture and inform the adoption of suitable strategies to ensure food security.
Metrics
References
- Acharki, S., Singh, S. K., do Couto, E. V., Arjdal, Y., & Elbeltagi, A. (2023). Spatio-temporal distribution and prediction of agricultural and meteorological drought in a Mediterranean coastal watershed via GIS and machine learning. Physics and Chemistry of the Earth, Parts A/B/C, 103425. https://doi.org/https://doi.org/10.1016/j.pce.2023.103425.
- Andrieu, J. (2008). Cartographie Par Télédétection Végétale Sur La Bande Littorale Ouest-Africaine : Exemple Des Rivières Du Sud Du Delta Du Saloum ( Sénégal ) Au Rio Geba ( Guinée-Bissau ). Revue Télédetection, 8(2), 93-118. https://shs.hal.science/halshs-00388170.
- Bento, V. A., Gouveia, C. M., DaCamara, C. C., & Trigo, I. F. (2018). A climatological assessment of drought impact on vegetation health index. Agricultural and forest meteorology, 259, 286-295. https://doi.org/10.1016/j.agrformet.2018.05.014.
- Clarke, K. R., Chapman, M. G., Somerfield, P. J., & Needham, H. R. (2006). Dispersion-based weighting of species counts in assemblage analyses. Marine Ecology Progress Series, 320, 11-27. https://www.int-res.com/abstracts/meps/v320/p11-27/.
- Diédhiou, I., Mering, C., Sy, O., & Sané, T. (2020). Cartographier par télédétection l’occupation du sol et ses changements. EchoGéo, (54), 0-41. https://doi.org/10.4000/echogeo.20510.
- Gidey, E., Mhangara, P., Gebregergs, T., Zeweld, W., Gebretsadik, H., Dikinya, O., … & Fisseha, G. (2023). Analysis of drought coping strategies in northern Ethiopian highlands. SN Applied Sciences, 5(7), 195. https://doi.org/10.1007/s42452-023-05409-5.
- Gomes, A. C. C., Bernardo, N., & Alcântara, E. (2017). Accessing the southeastern Brazil 2014 drought severity on the vegetation health by satellite image. Natural Hazards, 89, 1401-1420. https://doi.org/10.1007/s11069-017-3029-6.
- Mälicke, M. (2022). SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python. Geoscientific Model Development, 15(6), 2505-2532. https://doi.org/10.5194/gmd-15-2505-2022.
- Mostafa, A.-M. (2023). An update on Egypt climate change policies post-coronavirus. Journal of Legal and Economic Research, 13, 101-186. https://mjle.journals.ekb.eg/article_315095.html.
- Ramo, R., García, M., Rodríguez, D., & Chuvieco, E. (2018). A data mining approach for global burned area mapping. International journal of applied earth observation and geoinformation, 73, 39-51.
- Thomke, S. H. (2003). Experimentation matters: unlocking the potential of new technologies for innovation. (S.l.): Harvard Business Press.
- Tsiros, E., Domenikiotis, C., Spiliotopoulos, M., & Dalezios, N. R. (2004). Use of NOAA/AVHRR-based vegetation condition index (VCI) and temperature condition index (TCI) for drought monitoring in Thessaly, Greece. Dans EWRA Symposium on water resources management: risks and challenges for the 21st century, Izmir, Turkey (pp. 2-4).
- Unganai, L. S., & Kogan, F. N. (1998). Southern Africa’s recent droughts from space. Advances in Space Research, 21(3), 507-511.
- Wang, S., Chen, H., & Yao, X. (2010). Negative correlation learning for classification ensembles. Dans The 2010 international joint conference on neural networks (IJCNN) (pp. 1-8). IEEE. DOI: 10.1109/IJCNN.2010.5596702.
- Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., & Tucker III, C. J. (2015). Use of the Normalized Difference Vegetation Index (NDVI) to assess Land degradation at multiple scales: current status, future trends, and practical considerations. (S.l.): Springer.
- Zambrano, F., Lillo-Saavedra, M., Verbist, K., & Lagos, O. (2016). Sixteen years of agricultural drought assessment of the BioBío region in Chile using a 250 m resolution Vegetation Condition Index (VCI). Remote Sensing, 8(6), 530.
- Zhou, X., Wang, P., Tansey, K., Zhang, S., Li, H., & Wang, L. (2020). Developing a fused vegetation temperature condition index for drought monitoring at field scales using Sentinel-2 and MODIS imagery. Computers and electronics in agriculture, 168, 105144.
- Zhu, Y., Wang, W., Singh, V. P., & Liu, Y. (2016). Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection. Science of the Total Environment, 571, 1058-1068.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Benoumeldjadj Maya, Malika Rached-Kanouni, Abdelouahab Bouchareb
License
This work is licensed under a Creative Commons Attribution 4.0 International License.